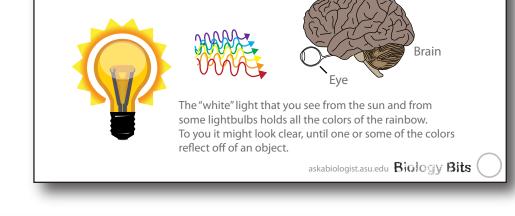

Bite-size Science

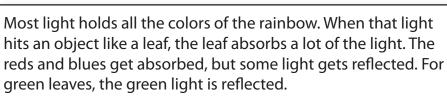
Trying new things can be hard. When you play a new sport, you have to learn and remember a whole new set of rules. When you try new food, you may end up not liking it (and you may even wish you could spit it out). The same goes for school. Learning information can be really hard and sometimes scary.

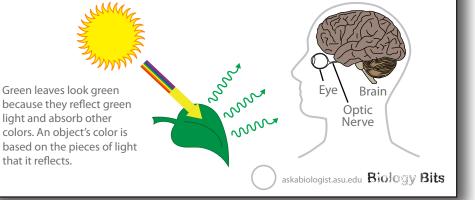
With food, what's the best way to start with something new? Trying a very small piece. You can take a tiny bite...taste it, feel the texture of it, and decide if you want more. Just like with new food, new information can also be easier to learn if you start off with really tiny bites.

Biology Bits stories are a great way for you to learn about biology a little bit at a time. We've broken down information into pieces that are very tiny—bite-sized, we call them. You can try just reading the Biology Bits at first. Cutting out the cards will let you organize them however you want, or use them as flashcards while you read.

Then, when you're ready to move on, use the empty cards to write out what you learned. You can copy what was already written, or try to write it in your own words if you are up for a challenge. Just remember, don't bite off too much at once!

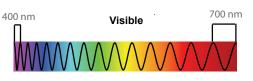



Written by Kimberly Pegram For more information on vision, visit: http://askabiologist.asu.edu/explore/seeing-color This set of bits will teach you about one of the ways we get information from the world around us: **by seeing color.**


Hungry for more bits? Visit:

http://askabiologist.asu.edu/activities/biology-bits

We can see the world and the colors around us because of light. When light reaches your eyes, your eyes tell your brain about the light. If more light hits your eyes, your brain knows that something is bright. The colors that reach your eyes are particular pieces of light.


Wave is something you might do when you see a friend. It's also the crashing water you see at the beach. But both of those actions are named after the true wave. A wave is a change that moves through a liquid—think of ripples in a pond. These waves can be measured by Wavelength

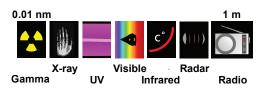
how tall they are, or how far apart they are. This second measure (the space between waves) is called wavelength.

askabiologist.asu.edu Biology Bits

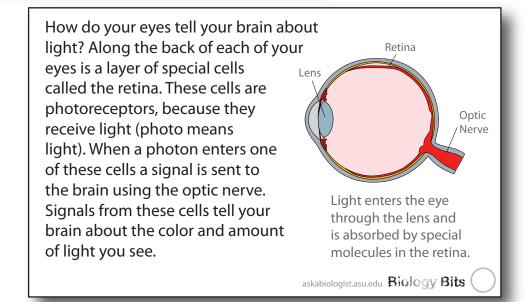
There are so many different colors, it would be very hard to try to name them all. There are blues and reds, greens and oranges, and many others in between. These different colors are caused by the wavelength of light. If we think again about

the ripples in a pond, wavelength is the distance between ripples. When the ripples of light are close together, we see violets and blues. When they are far apart, we see reds.

Different colors are caused by different light wavelengths. Purple is 400 nanometers (nm) while red is 700 nm. Humans can only see from 400 to 700 nm, so this is called the visible spectrum.


askabiologist.asu.edu Biology Bits

Biology Bits

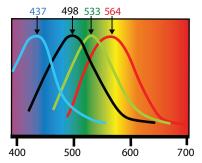

The pieces of light are called photons. Photons are like very tiny fields of electricity that are weightless. Our eyes are only sensitive to some wavelengths of energy. These wavelengths

fall into what we call visible light. Other energy waves go all the way from very tiny wavelengths (gamma rays) to very large ones (radio waves).

From smallest to largest wavelengths of light (left to right) we have gamma rays, x-rays, ultraviolet rays, visible light, infrared rays, radar, and radio waves. The size of these wavelengths goes from nanometers (nm) up to meters (m).

askabiologist.asu.edu Biology Bits

Sometimes when it is dark out, the world almost looks black and white. That is because we have different photoreceptors



for different light conditions. Rods are used to see in low light, but do not detect color. The other photoreceptors are called cones. Cones allow us to see color but do not work well in low light.

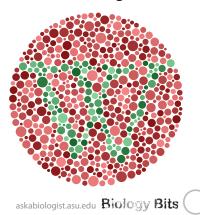
The eye has two types of photoreceptors. Rods are used in low light and do not detect color. Cones let us see color, but do not work well when it is dark.

askabiologist.asu.edu Biology Bits

Most humans have three types of the photoreceptors called cones. These types are red, green, and blue. Cones are named

for the color that they pick up the best. We can see more than just these three colors because the cones each pick up a range of colors. The brain then compares the signals from the red, green, and blue cones.

Each cone only picks up a small range of colors. The brain compares the signals, letting you see a variety of colors. Rods are in black and pick up their own set of wavelengths.


askabiologist.asu.edu Biology Bits

Have you ever met someone who doesn't see color the same way as most people? That person may not have all three types of cones. Nine percent of humans are missing at least

one cone type. This means they cannot see all colors. This is known as color blindness. It is very rare for someone to not be able to see any color at all.

> Can you see the W in this picture? If not, you might see colors a bit differently than most other people.

Humans are different from many other animals. And not just in the way they look. The eyes of most animals and the way they see color differs from humans. Some scientists study animal eyes. They can tell what types of cones each animal has. The cones tell them what colors the animals can see. Some animals can see light that humans cannot see. For example, many insects can see ultraviolet light, which is the

part of sunlight that can give you a sunburn.

Many insects, like this fly, can see ultraviolet (UV) light. For the most part, humans cannot see UV light.

askabiologist.asu.edu Biology Bits

If it's raining, but the sun is out, you can often see a rainbow. Rainbows show all of the colors that humans can see. Raindrops act like tiny prisms. Prisms are clear, angled objects that can affect light. Some of the light is refracted (changes directions) through a raindrop. This spreads the light into the spectrum of colors. The spread of colors makes the rainbow. Raindrops cause light to

refract and spread into a rainbow. The same effect is seen with prisms.

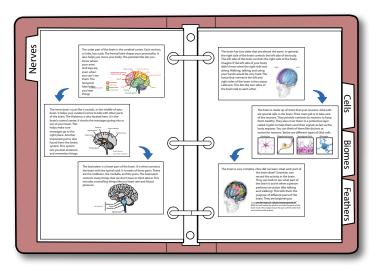
askabiologist.asu.edu Biology Bits

Some of what we know about color was found a long time ago. Sir Isaac Newton was a physicist. Physicists study objects and the way they move. Newton particularly liked studying math, gravity, and motion. His study of math made

a lot of discoveries about physics possible. He also studied optics, or the physics of light. Newton first saw the color spectrum using a glass prism.

Newton may be best known for discovering gravity, but he also learned a lot of new things about light.

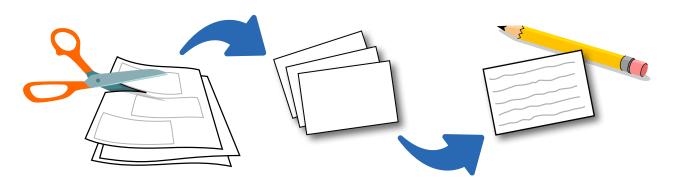
askabiologist.asu.edu Biology Bits (


askabiologist.asu.edu Biołogy Bits
askabiologist.asuedu Biołogy Bits

400 nm Visible	700 nm askabiologist.asuedu Biology Bits
	skabiologist.asu.edu Biołogy Bits
	askabiologist.asu.edu Biology Bits

	askabiologist.asu.edu Biołogy Bits	
437 498 533 564 437 498 533 564 400 500 600 700	askabiologist.asu.edu Biology Bits	
	askabiologist.asu.edu Biology Bits	

askabiologist.asu.edu Biology Bits
askabiologist.asu.edu Biology Bits


you say? Photon – [foe-tawn] Physics– [fizz-icks] Prism – [priz-uhm]
Radar– [ray-dahr] Retina– [ret-in-uh] Spectrum – [speck-truhm] Ultraviolet – [uhl-truh-vie-uh-let] askabiologist.asu.edu Biology Bits
askabiologist.asu.edu Biołogy Bits
askabiologist.asuedu Biology Bits

Instructions

Ready to begin? You can use these bits in many ways. You can print the pages and place them in a notebook for review. You can also cut each card out to re-organize them any way you want.

The empty cards can be used to write out what you learned in your own words, or to copy what's already written. Also included is a pronunciation guide, to help you learn how to say the more complicated words.

Illustration Credits

Dan-yell - via Wikimedia Commons

• Ishihara (colorblind) test

Sabine Deviche - via Ask A Biologist

Fly, Waves in pond, Prism

Eddo - via Wikimedia Commons

- Sun
- Erin Silversmith via Wikimedia CommonsEye

LadyofHats - via Wikimedia Commons

Newton

Pancrat - via Wikimedia Commons

- Cone & Rod
- Spectrum Absorption

Tatoute & Isometrik - via Wikimedia Commons

Electromagnetic and visible spectrum

YassineMrabet- via Wikimedia Commons

Lightbulb

